Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Organic semiconductors based on liquid crystal (LC) molecules have attracted increasing interest. In this work, two linear LCs based on 2,5‐bis(thien‐2‐yl)thieno[3,2‐b]thiophene (BTTT) mesogen are designed and synthesized, including BTTT/dEO3 with two symmetrically attached tri(ethylene oxide) groups and BTTT/mEO6 with one asymmetrically attached hexa(ethylene oxide) group. These two molecules have comparable functional‐group compositions but different molecular geometries, leading to their moderately different material performances. Both LCs show smectic mesophases with relatively low transition temperatures as confirmed by differential scanning calorimetry and polarized optical microscopy. A combination of experimental grazing incidence wide‐angle X‐ray scattering and molecular dynamics (MD) simulations reveals a herringbone packing motif of BTTT segments in both LCs while a smaller molecular tilt angle in BTTT/mEO6. Ionic conductivities are measured by doping LCs with different amounts of ionic dopants, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). BTTT/mEO6 shows better smectic phase stability to higher LiTFSI doping ratios. Both LCs exhibit similar ionic conductivities in the smectic phases, but BTTT/mEO6 outperforms BTTT/dEO3 by a factor of three in the amorphous phase at higher temperatures. MD simulations, performed to examine the ion solvation environment, reveal that BTTT/mEO6 is more efficient in coordinating Li‐ions and screening their interactions with TFSI‐ions which further promote ionic transport.more » « less
-
null (Ed.)A major limitation for polymeric mixed ionic/electronic conductors (MIECs) is the trade-off between ionic and electronic conductivity; changes made that improve one typically hinder the other. In order to address this fundamental problem, this work provides insight into ways that we could improve one type of conduction without hindering the other. We investigated a common oligoethylene glycol side chain polymer by adjusting the oxygen atom content and position, providing structural insights for materials that better balanced the two conduction pathways. The investigated polymer series showed the prototypical conflict between ionic and electronic conduction for oxygen atom content, with increasing oxygen atom content increasing ionic conductivity, but decreasing electronic conductivity; however, by increasing the oxygen atom distance from the polymer backbone, both ionic and electronic conductivity could be improved. Following these rules, we show that poly(3-(methoxyethoxybutyl)thiophene), when blended with lithium bistrifluoromethanesulfonimide (LiTFSI), matches the ionic conductivity of a comparable MIEC [poly(3-(methoxyethoxyethoxymethyl)thiophene)], while simultaneously showing higher electronic conductivity, highlighting the potential of this design strategy. We also provide strategies for tuning the MIEC performance to fit a desired application, depending on if electronic, ionic, or balanced conduction is most important. These results have implications beyond just polythiophene-based MIECs, as these strategies for balancing backbone crystallization and coordinating group interconnectivity apply for all semicrystalline conjugated polymers.more » « less
An official website of the United States government
